Webbased

instruction level simulation

of a parameterisable
dynamic processor

Bachelorarbeit
von

Maximilian Senftleben

29. Marz 2011

Referent: Prof. Dr. Klaus Schneider
Betreuer: Jens Brandt

Hiermit versichere ich, dass ich die von mir vorgelegte Arbeit mit dem Thema
“Webbased instruction level simulation of a parameterisable dynamic processor” selb-
ststandig verfasst habe, dass ich die verwendeten Quellen und Hilfsmittel vollstindig
angegeben habe und dass ich die Stellen der Arbeit — einschliellich Tabellen, Karten
und Abbildungen —, die anderen Werken oder dem Internet im Wortlaut oder dem
Sinn nach entnommen sind unter Angabe der Quelle als Entlehnung kenntlich gemacht
habe.

Kaiserslautern, den 29. Marz 2011

(Unterschrift)

Maximilian Senftleben

Abstract

This thesis describes the design and implementation of a simulator for a parameteris-
able dynamic scheduled processor and its underlying principles and required techniques.
The principles of dynamic scheduling and speculative execution are explained. Some
characteristics of the resulting simulator are defined and important hazards, which
come along with the implementation, and their solutions are mentioned. The imple-
mented simulator is described with its core components and most important functions.

Kurziiberblick

Diese Arbeit beschreibt das Entwerfen und die Umsetzung eines Simulators fiir einen
parametrisierbaren, dynamischen Prozessor sowie die zugrundeliegenden Prinzipien
und benotigten Verfahren. Die Grundlagen von dynamischer Prozessorablaufplanung
und spekulativer Befehlsausfiihrung werden beschrieben. Diverse Eigenschaften des
resultierenden Simulators werden definiert und wichtige, die Implementierung begleit-
enden, Problematiken genannt und behandelt. Der implementierte Simulator wird mit
seinen Kernbestandteilen und den wichtigsten Funktionen beschrieben.

Contents

1 Introduction

1.1 Subject
1.2 Motivation
1.3 Structure and outline

2 Related Work
2.1 Review of common simulators
2.2 Distinction and benefits

3 Fundamentals

3.1 MIPS . . . e
3.2 Tomasulo Algorithm
3.3 Hardware-Based Speculation

4 Design Decisions

4.1 Assumptions
4.2 Restrictions
4.2.1 Instruction Set
4.2.2 Memory
4.3 Other e
4.4 Hazards e

5 Implementation

5.1 Programming languageo
5.2 Objects
5.2.1 Processor
5.2.2 Reservation Station 0oL
523 ROB
5.24 Memory
5.3 Cycle Simulation oo
5.3.1 IF . oo
532 ID ..
5.3.3 EX .o
534 WB ..

13
13
14

17
17
17
19

21
21
21
21
23
23
24

6

7

User Interaction 33

6.1 GUIL 33
6.2 How To 34
6.3 Restrictions e 35
Result 37
7.1 Validation 37
7.2 Implementation comment L 38
7.3 Suggestions for further worko 38
7.4 Conclusion e 39

List of Figures

3.1 The basic structure of a MIPS floating-point unit using Tomasulo’s al-
gorithm [1, p. 94 figure 2.9, modified]

4.1 Data dependency graph for the process stages, revealing a cyclic depen-
dency

5.1 Processor class diagram Lo
5.2 Class diagrams
5.3 Memory class diagramo

6.1 Graphical user interface overview
6.2 Graphical user interface with inititated example setup

List of Tables

4.1 The encoding of Little MIPS instructions, their relation to MIPS and
their IO behaviour

“There are three arts which are concerned with all things: one which uses,

another which makes, and a third which imitates them.”

Plato (427 BC - 347 BC)

Chapter 1

Introduction

1.1 Subject

One of the most important approaches to improve processor performance is pipelining.
It divides the execution of an instruction into several steps and overlaps their execution
to increase instruction throughput; e.g. the classic 5 stage RISC pipeline with the stages
IF, ID, EX, MEM, WB! as used in the DLX and early MIPS processors. [1, App. A]

Superscalar execution is a more advanced improvement based on pipelining. The ap-
proach aims at the execution of multiple instructions from one instruction stream in

parallel on different function units.

To minimize structural conflicts®> and to avoid problems resulting from parallelization
of an instruction stream there exist two different superscalar processor types: static and
dynamic scheduled. [1, p. 114] The order of the instruction stream of a static scheduled
processors is determined by a compiler based on detail knowledge about the target
architecture. In contrast, a dynamic scheduled processor, reorders the instruction
stream in execution time by itself to utilize the maximum number of available function
units on the one hand while considering data dependencies® between instructions on
the other hand.

'TF: instruction fetch, ID: instruction decode, EX: execute, MEM: memory update, WB: writeback
2hardware limitation, e.g. not enough integer function units
3e.g. RAW: read after write: an instruction should read a value written by a preceding instruction

1.2. MOTIVATION CHAPTER 1. INTRODUCTION

1.2 Motivation

“In the author’s opinion, entirely too much programmers’ time has been
spent in writing such simulators and entirely too much computer time has
been wasted in using them.” - Donald E. Knuth [2, p. 202]

Starting with this quote, I want to point out the mass of exisiting simulators and say

a few words why I build another one.

As described before, dynamic scheduling is a powerful performance enhancement tech-

nology which therefore should be illustrated in a way easy to understand.

In my opinion, a simulator providing an example superscalar dynamic scheduled pro-
cessor and offering the possibility to understand the operating principles by exploring
them via trial-and-error and exercising based on given examples would be an valuable

addition to computer science education.

In this thesis, I therefore want to address that issue by the approach to design and
implement a simulation of a simplified processor providing the desired superscalar and

dynamic scheduled architecture.

The result should offer a high degree of customizability to address a wide range of
possible usage scenarios and offering a huge number of different exercises. To address
a broad public it should be ready to use without much preparatory work, should not
require additional software and preferably should be platform independent. The user

interface should not require much explanation and allow an easy use of the simulator.

1.3 Structure and outline

At first the motivation to design a new simulator is stated in the first chapter along

with a short introduction to the subject.

The next chapter 2 consists of reviews of common simulators. Here their usefulness to
serve the described purpose is analysed. A conclusion explains reasons to design a new

simulator instead of using one of the reviewed ones.

Chapter 3 establishes a knowledge base with some fundamental techniques required in
this thesis.

The following chapter 4 states and discusses some design decisions made to simplify and

10

CHAPTER 1. INTRODUCTION 1.3. STRUCTURE AND OUTLINE

adjust the simulator to the aimed usage scenarios. Furthermore, hazards are mentioned

which have to be considered during the implementation.

The implementation itself is described in chapter Chapter 5. The most important
structures and functions are described in detail and the occuring hazards and their

solutions are explained.

Chapter 6 gives a short overview on the graphical user interface and describes how to

use the interface and which restrictions have to be considered.

Finally in the last chapter 7 the resulting simulator is successfully validated. Along a

short comment and suggestions for further work I conclude the successful thesis.

In this document I used some parts of the latex template of [3].

11

1.3. STRUCTURE AND OUTLINE CHAPTER 1. INTRODUCTION

12

Chapter 2

Related Work

Because of the advantages a simulator can offer, many have been developed so far and
others will be designed in the future. These simulators serve different purposes as well

as doing so in varying ways with other degrees of complexity.

2.1 Review of common simulators

Written in 1992 SIMPLESCALAR has become one of the most popular simulators for
computer architectures. “For example, in 2000 more than one-third of all papers pub-
lished in top computer architecture conferences used the SimpleScalar tools to evaluate
their designs.”[4] It supports the instruction sets Alpha, PISA!, ARM and x86 with
and without microcode. The SIMPLESCALAR tool set contains some sample simula-
tors including a fast functional processor, a dynamic scheduled processor with branch

prediction and others. [5]

SESC? simulates the MIPS instruction set on different architectures, eg. a dynamic
superscalar processor, CMP3, processor-in-memory and speculative multithreading ar-
chitectures in contrast to SIMPLESCALAR which is primarily designed to simulate single

processors. [6]

A full-system simulation of the SPARCVY instruction set is offered by GEMS?* which
is based on SIMICS. |7, 8]

IPISA: Portable ISA, similar to MIPS

2SESC: SuperESCalar Simulator

3CMP: Chip level multiprocessing

4GEMS: General Execution-driven Multiprocessor Simulator

13

2.2. DISTINCTION AND BENEFITS CHAPTER 2. RELATED WORK

The M5 Simulator is a highly object orientated simulator and therefore supports the
usage of multiprocessors and a broad range of instruction sets: Alpha and SPARC in
full-system simulation and MIPS, ARM and x86 currently in syscall emulation only.
9, 10]

PTLsIM is a cycle accurate superscalar out of order x86 and x86-64 simulator with
full support of x86-64, SSE/SSE2/SSE3, MMX, x87 and therefore “[...] being the only
open source cycle accurate x86 microarchitectural simulator [of real and commercial
x86 microarchitectures, A/N] available to researchers [...]”[11]. It is used by many

universities, researchers and the processor vendors Intel and AMD themselves. [12, 13]

In contrast to previously named simulators, MARS? simulates the functional behaviour
of assemblercode on a MIPS32 architecture. It is used to teach the assembler language

as well as to test MIPS32 assembler programs. [14]

The JAVAHASE applets illustrate and simulate different computer architectures step-
by-step primarily for teaching purposes. JavaHASE is based on the powerful HASES
and the SIMJAVA simulation package with animation facilities. The available applets
range from a simple pipelined DLX processor to a dynamic-scheduling processor based
on the Tomasulo algorithm. [15, 16, 17, 18]

SPIM’ runs MIPS32 assembler programs and simulates there functional behaviour
while offering the possibility to debug the program and to manipulate register contents.
[19, App. A]

2.2 Distinction and benefits

The majority of the reviewed simulators are designed for high speed execution instead
of illustrating step-by-step simulations. Each of them offers different features like
debuggers, support for multiple instruction sets or implementation of state-of-the-art
processor techniques. Anyhow, to me most of them offer far too much additional
functionality or just can not suit the educational goal to understand how exactly a

dynamic scheduled processor operates and the way it benefits from its design.

SPIM, which supports singlestep execution, continuous monitoring of the current pro-

cessor state and the possibility to alter the register values is a good approach to the

SMARS: MIPS Assembler and Runtime Simulator
SHASE: Hierarchical computer Architecture design and Simulation Environment
"SPIM: palindrome of "MIPS’

14

CHAPTER 2. RELATED WORK 2.2. DISTINCTION AND BENEFITS

previous defined goals (section 1.2). However, it does not model a dynamic scheduled
processor so it can not fulfill the intended purpose. Also it has to be installed before
it can be used and in my opinion the design aims more at experienced users than

computer architecture beginners.

JAVAHASE on the other hand matches the intended purpose even more, since it does
not require any installation, offers an applet for Tomasulo’s dynamic scheduling al-
gorithm and comes with an interface very easy to understand while maintaining the
possibility to influence the simulation example (e.g. altering memory data, register
data and latencies). Still it offers no possibility to adjust the model of the simulation
(e.g. numbers of functional units etc.), the applets are deprecated and are no longer
maintained and I regard the design as limited and the nomenclature of its components

(especially those in the parameters dialog) as not self-explanatory enough.

The resulting simulator designed and implemented during this thesis should feature a
step-by-step simulation of a dynamic scheduled processor without requiring the user
to install additional software. In order to allow a comparison of the impact of different
structural processor characterisitics (e.g. number of functional units, buffer sizes) on
program execution times and the instrution flow and to provide many varying examples,
the simulation should be customizable to some degree but keep the interface and the

setup easy to understand.

15

2.2. DISTINCTION AND BENEFITS CHAPTER 2. RELATED WORK

16

Chapter 3
Fundamentals

The design of the resulting simulator of this thesis is based on some common computer

architecture concepts described below.

3.1 MIPS

MIPS32! ISA? is classified as a RISC? ISA. Its instructions share an uniform length
of 32 bits and they are constructed in accordance with just a few different patterns.
MIPS, developed since 1981, was one of the first RISC architectures used. It plays
an essential role in embedded systems today and is also used in some recent super
computers. [20] Therefore, it is often studied at universities as an example computer

architecture. [21]

3.2 Tomasulo Algorithm

The Tomasulo Algorithm describes a scheme to enable out-of-order execution and to
reduce the number of read and write hazards. It minimizes RAW* hazards by forward-

ing the operands for instructions as soon as they are available. To minimize WAR®

I'MIPS (originally): Microprocessor without Interlocked Pipeline Stages
2ISA: instruction set architecture

3RISC: reduced instruction set computer

YRAW: read after write

SWAR: write after read

17

3.2. TOMASULO ALGORITHM CHAPTER 3. FUNDAMENTALS

From instruction unit

Instruction FP registers ,[
queue

Operand
buses

Floating-point
operations

Operation bus

3

2 Reservation |||
stations

| FP adders . FP multipliers

A Commen data bus (CDB)

—

Figure 3.1: The basic structure of a MIPS floating-point unit using Tomasulo’s algo-
rithm [1, p. 94 figure 2.9, modified]

and WAW?® conflicts the approach uses register renaming to preserve temporary register

values.

The algorithm describes the usage of different units connected via the so called common
data bus (CDB). For each functional unit or groups of equal function units a so called
reservation station stores the next instructions to execute, their operands value and
the state of availability of these values. Each instruction passes three steps. In the first
step called ‘issue’ the instruction is fetched from the instruction queue and inserted into
a matching reservation station if it is empty. While insertion the algorithm checks if
operands are available and if not keeps track of the functional unit which will produce
the required operand(s). The next step called ‘execute’ describes the updating of the
reservation station entries and the assignment of an instruction towards a functional
unit. The last step is called 'write result’. In this step, available results are fetched
from the functional units and written to the registers, reservation stations and memory
via the CDB. [1, p. 92 et seq.]

The out-of-order execution with the Tomasulo algorithm provides a better performance

SWAW: write after write

18

CHAPTER 3. FUNDAMENTALS 3.3. HARDWARE-BASED SPECULATION

because independent instructions can execute instead of waiting for previous stalled
instructions and the cycle frequency can be increased due the seperation of different

execution units.

An example implementation of the Tomasulo algorithm is illustrated in figure 3.1. The
figure shows a MIPS unit for floating point operations with disjunct reservation stations

for addition and multiplication.

3.3 Hardware-Based Speculation

A bottleneck of Tomasulos Algorithm are branch instructions because they require
the instruction fetching to pause until they leave their execution unit and the next
instruction can be fetched according to their result. To eliminate this bottleneck,
modern processors use hardware-based speculation. They predict the outcome of the
branch evaluation and act accordingly. If their speculation was wrong all speculative
fetched and executed instructions must be removed, the processor must be reset and
the instruction fetch must restart fetching at the correct branch target. To achieve
this a processor remembers the prediction and compares it to the branch result in the
Writeback stage. If prediction and result do not match the PCT is set to the branch
target and the processor is reset to its initial state. This procedure in combination
with the Tomasulo algorithm guarantees that no speculative wrong-fetched instruction

result is written to the register or memory.

One approach to achieve better predictions is to maintain a so called ‘branch history
table’. It keeps track of previous predictions and their results and is updated if the
outcome is different from the prediction. Because of that the processor may make

better predictions for loops in most programs.

"PC: Program Counter - address of executed instruction

19

3.3. HARDWARE-BASED SPECULATION CHAPTER 3. FUNDAMENTALS

20

Chapter 4

Design Decisions

4.1 Assumptions

As most computers are implemented that way, for the purpose of this thesis I assume
that MIPS uses two’s complement for signed values and the General Purpose Register

0 is invariably set to zero. Therefore, I will implement it that way too.

To simplify the implementation, I assume the flushing of the processor while it is reset
due to a branch misprediction is completed in the same cycle as it is initialized and

therefore does not generate additional performance costs.

4.2 Restrictions

4.2.1 Instruction Set

The simulator is going to use a reduced and simplified MIPS instruction set named
LittLe MIPS which only implements a subset of the MIPS instructions. LITTLE
MIPS like MIPS uses a 6bit opcode but no additional function field (or similar) and
therefore can implement 64 operations. As the simulator will have a variable register
size, the length of the register address will vary too and as a consequence the instruction
encoding depends on the register size. A instruction word has the size of 6bit plus 3
times the length of a register address. Because of that, immediate operands have the
same length as a register address and the target of a jump instruction has the size

of 3 times the register length. For example a simulated processor using 64 registers

21

CHAPTER 4. DESIGN DECISIONS

4.2. RESTRICTIONS

Encod. Int Opcode signed MIPS opc-fct Format Wr Rd Desc

000000 0O TERM - - - - - Terminate Processor

000010 2 J - id off3 - - Jump

000100 4 BEQ y id rs,rt,off - rs,rt Branch iff equal

000101 5 BNE y id rs,rt,off - 1S, 1t Branch iff not equal

000110 6 BLEZ y id rs,off - IS Branch iff <=0

000111 7 BGTZ y id rs,off - s Branch iff > 0

001000 8 ADDI y id rt,rsim rt IS Add Immediate

001001 9 ADDIU y id rt,rs,im 1t IS like ADDI

010000 16 ADD y 000000-100000 rd,rs,rt rd rs,rt Addition

010001 17 ADDU y 000000-100001 rd,rs,rt rd rs,rt like ADD

010010 18 SUB y 000000-100010 rd,rs,rt rd rs,rt Subtraction

010011 19 SUBU y 000000-100011 rdyrs;rt rd rs,rt like SUB

010100 20 MULT y 000000-011000 rs,rt hilo rs,rt Multiplication

010101 21 MULTU n 000000-011001 rs,rt hilo rs,rt Multiplication unsigned

010110 22 DIV y 000000-011010 rs,rt hilo rs,rt Division

010111 23 DIVU n 000000-011011 rs,rt hi,Jlo rs.rt Division unsigned

011000 24 MUL y 011100-000010 rd,rs,;rt rd rs,rt Full multiplication

011010 26 SLT y 000000-101010 rd,rs,;rt rd rs,rt Set on Less Than

011011 27 SLTU n 000000-101011 rd,rs,;rt rd 1S, 1t Set on Less Than unsigned

011100 28 AND - 000000-100100 rd,rs,rt rd 1S, 1t Bitwise AND

011101 29 OR - 000000-100101 rd,rs,rt rd rs,rt Bitwise OR

011110 30 XOR - 000000-100110 rdyrs;rt rd rs,rt Bitwise XOR

011111 31 NOR - 000000-100111 rd,rs,rt rd rs,rt Bitwise NOR

100011 35 LW - id rt,off(rs) rt rs,mem Load Word

101011 43 SW - id rt,off(rs) mem rs;t Save Word

110000 48 MFHI - 000000-010000 rd rd hi Move From High

110010 50 MFLO - 000000-010010 rd rd lo Move From Low
Table 4.1: The encoding of Little MIPS instructions, their relation to MIPS and their IO behaviour

(In MIPS ADDU (ADDIU,SUBU) differs from ADD (ADDI,SUB) only in exception handling: ADD (ADDI,SUB) raises overflow
exceptions, ADDU (ADDIU,SUBU) does not.)

22

CHAPTER 4. DESIGN DECISIONS 4.3. OTHER

needs 6bit for each register address. In this case a signed immediate operand would
have a value out of {-32,....31} and a jump target would have a maximum value of
524287. The MIPS functions only identified via opcode have the same encoding in
LitTLE MIPS, other functions are assigned to unused opcodes. [22]

The syntax of LITTLE MIPS instructions is the following:

R-Type: opc(6), rs(r), rt(r), rd(r)
I-type: opc(6), rs(r), rt(r), immediate(r)
J-type: opc(6), target(3r)

r : length of registeraddress

Table 4.1 shows the encoding of the LITTLE MIPS instructions and their according
MIPS encoding. The table also lists which inputs an instruction requires and which

outputs it modifies. [22]

4.2.2 Memory

To prevent possible dependencies between write instructions and the instruction fetch
stage, the processor is implemented as a Harvard architecture to completely seperate
instruction memory and data memory. If the simulator is going to allow the simulation
of multi processors no additional problems beside datamemory cache coherence need

to be considered.

I assume that a memory access unit can not be interrupted and implement it that way.
This means that an initiated load will return the data whether they are still needed or

not.

4.3 Other

As the simulator design should not cover too much details I decided not to implement
processor exceptions (e.g. integer addition overflow) as they are not that important to

understand the operating principles of dynamic scheduling.

Other decisions are motivated by the available data structures and types of the pro-
gramming language. Arrays with (default) int(32) indices limit the potential size of
register and memory as they are implemented as arrays. The usage of int(32) to hold

an encoded instruction limits the register address length to a maximum of 8 bits (6 +

23

4.4. HAZARDS CHAPTER 4. DESIGN DECISIONS

3 * 8 = 30). As the datatype long(64) is used to hold the memory data and register

values their maximum length is 64 bit which limits the adressable memory as well.

The branch prediction uses a branch history table. It uses the modulo operation to
assign memory entries to branch history entries. The branch history table features a
variable history depth, which determines when the prediction should be updated, and

variable table size.

4.4 Hazards

As no parallel programming language is used the data dependencies between the pro-
cessor stages have to be concidered during implementation. As each stage produces
data required one clock cycle later by the next stage they are all linear independend.
Due to other dependencies, e.g. jump (in ID) and branch (in WB) instructions manip-
ulating the PC used in the IF stage, the dependencies form a cycle. Figure 4.1 shows

some of the dependencies which have to be considered.

PC: Program Counter

read PC now

write IR delayed

IR: fetched instruction

read IR now

write PC delayed

1D
inserts inte Rsvst/ROB delayed
EX Reservation Station/
€ 3 ReOrder Buffer
read RsvSHROEB now
WB
write PC delayed

Figure 4.1: Data dependency graph for the process stages, revealing a cyclic depen-
dency

Because load instructions do not calculate their result during execute but their memory

24

CHAPTER 4. DESIGN DECISIONS 4.4. HAZARDS

address, a memory controller must fetch the result value before the reorder buffer entry

can be considered as ready.

As described in section 4.2.2 memory access units can not be interrupted. As a result,
an instruction fetch memory access can not be interrupted even if the processor is
flushed and the PC is reset. It has to be dealt with the possibility that unwanted data

returns from a memory controller.

25

4.4. HAZARDS CHAPTER 4. DESIGN DECISIONS

26

Chapter 5

Implementation

5.1 Programming language

The simulator is implemented as a webservice and therefore ASP.NET! with the pro-
gramming language C# is used. The interface is visualized via HTML? and controlled

by JavaScript.

Java was rejected because it would require the installation of a Java Runtime Environ-

ment on the one hand and its performance disadvantage towards C#.

Another candidate PHP is not used due to its weak type system.

5.2 Objects

To offer some degree of customizability the simulator uses classes and objects to rep-

resent certain units of the processor.

LASP: active server pages (Microsoft)
2HTML: Hypertext Markup Language

27

5.2. OBJECTS CHAPTER 5. IMPLEMENTATION

5.2.1 Processor

Processor

-PC: uint

-IR: Instruction

-Reg: ulongl]
-FwdRobRef: uint[]
-RsvSt: ReservationStation
-ROB: ReOrderBuffer
-exlnits: ExUnit[]

-IC: InstructionMemory
-BHT: BranchHistoryTable
-Mem: Memory

-IRbsy: bool

-IRrdy: bool

-IRreq: bool

-ICspoilt: bool

-wpr: bool

-1fwd: bool

-bfwd: bool

+step()

Figure 5.1: Processor class diagram

The processor class represents a processor and provides the primary object used for
the simulation. As figure 5.1 shows, it allocates variables for the processor states,
interrupt handling (due to jump or branch instructions updating the PC), registers
and the different architectural units. The public method step() represents the actual

simulation of a processor cylce.

As mentioned in the previous chapter the registers are implemented as 64bit (unsigned)
integer array. The FwdRobRef array is used for register renaming. FwdRobRef[i]
determines if Register Regli] is up to date or which ROB? entry will produce the
required value for it. The per processor instruction memory is seperated from the

main memory passed as reference to the processor.

5.2.2 Reservation Station

The reservation station consists of an internal array of reservation station entries and
some functions for interaction listed in the class diagram in 5.2a; It offers functions
to check if a slot is available for insertion and the insertion itself, others to check for
the availability of executable instructions, to dispatch them to execution units and to
release them if they leave the execution units and another one to clear the reservation

station in case of a processor flush /reset.

3ROB: ReOrder Buffer

28

CHAPTER 5. IMPLEMENTATION

5.2. OBJECTS

ReOrderBuffer

ReservationStation

-array: ReservationStationEntry[]

-list: ReOrderBufferEntryl]
-ROB_hd: uint
-ROB_tl: uint

+available(): bool

+clear(): bool
+insert(entry:ReservationStationEntry
+dispatched(instruction:Instruction)
+release(instruction:Instruction)
+hasReadyStation(): bool

+getReadyEntries(): List=Instruction=

+available(): bool

+clear()
+enqueue(entry:Re0rderBufferEntry
+empty(]): bool

+ready(): bool
+update(instruction:Instruction)
+dequeue() : ReOrderBufferEntry

(a) ReservationStation

(b) ReOrderBuffer

5.2.3 ROB

Figure 5.2: Class diagrams

In contrast to the reservation station the ROB is implemented as a list in order to

support a FIFO* data flow. Because the reorder buffer has a fixed size during simulation

an array with head and tail indices is used instead of an dynamic list type.

The

functionality provided by the ROB is shown in figure 5.2b. Just like the reservation

station it provides a function to check for an available slot, another to clear the reorder

buffer in case of a processor flush/reset and others to insert and remove entries from

the reorder buffer although this only works in a FIFO manner. Additionally it offers

functions to check for emptiness of the reorder buffer or to check for the availability of
the first instruction for the WB stage.

5.2.4 Memory

Memory

+address: uint
+data: bytel]
+rdy: bool
+read()
+write()
+step()

Figure 5.3: Memory class diagram

As instruction memory and main memory are implemented in a similiar way only

the latter one will be introduced. They implement an interface which allows the in-

terchangeability with cached memory architectures which could be implemented in

4FIFO: First in - First out

29

5.3. CYCLE SIMULATION CHAPTER 5. IMPLEMENTATION

further work. The interface, as shown in figure 5.3, offers variables to set the target
address, check for and return the result and functions to initiate a load or store query.
Further it provides a function called every processor cylcle which simulates a cycle of
the memory and at first considers memory latencies but could implement multilevel
cache hierachies with different latencies and their hit/miss behaviour in a later release

as well.

5.3 Cycle Simulation

The different stages described by the Tomasulo Algorithm are realized as functions.

Because each stage produces data required by the following stage in the next clock
cycle, they would overwrite the data required by the following stages in the actual
clock cylce. To solve these dependencies, each simulated clock cycle the stages are
executed sequentially reversed: first WB, then EX followed by ID and at last IF. As

mentioned in 4.4 more dependencies have to be considered.

5.3.1 IF

If the processor is not in a terminated state IF fetchs a new instruction from the
instruction memory if ID requests a new instruction (IRreq == true) and IF is not
busy with already fetching an instruction. In case of the instruction memory not being
ready yet IRbsy indicates that no new instruction request needs to be issued the next
clock cycle. If the processor has been reset then ICspoilt indicates that the result of
an ongoing instruction memory request must be discarded. IRrdy and IRreq represent
signals, send and read in the same cycle and reset to 0 in the next one, of a physical
processor implementation. IF sends IRrdy iff IR holds a valid requested instruction
provided by the instruction memory. Because IF is simulated at last and sets IRrdy if
IR holds a valid instruction, it is equivalent to IF sending IRrdy the next clock cycle
when IR holds a valid instruction or just has changed to the new instruction. Other
dependencies like the wrong branch prediction interrupt or jump and branch forwarding
which affects IF in the same clock cycle they occur are resolved by IF beeing the last

executed stage as well.

30

CHAPTER 5. IMPLEMENTATION 5.3. CYCLE SIMULATION

5.3.2 ID

ID checks whether an instruction is ready (IRrdy), decodes it and inserts it into the
reservation station and reorder buffer. In case of a jump instruction jfwd is set and
PC updated to the jump target. If the instruction is a branch the branch is predicted
according to the matching branch history table entry. While insertion into the reser-
vation station ID checks the forward reference table if the operands are available or
which reservation stations provides them. Write instructions update the forward ref-
erence table to their reservation station id as their result is the operand for further
instructions reading the same register. If there are free slots in the reservation station

and reorder buffer ID sets IRreq to request a new instruction fetch.

5.3.3 EX

Stage EX is split into two subfunctions: Dispatch and Fetch.

Dispatch checks for instructions ready for execution (in FIFO order) and dispatchs
them to available fitting execution units if possible. Each execution unit has its own

list of supported instructions and therefore many different settings can be simultated.

Fetch observes the execution units for finished instructions, writes their results to the
reorder buffer and updates instructions waiting for these operands in the reservation
station. However load and store instructions must be handled differently as they only
calculated the target address and still need to be passed to the memory controller. To
address this issue reorder buffer entries with load/store instructions are not considered

ready (for writeback) until they additionally were processed by the memory controller.

5.3.4 WB

The last stage WB checks whether the reorder buffer has an instruction ready for
writeback and performs the according tasks. An instruction is ready for writeback
if the execution unit has calculated the result, it is the topmost entry of the reorder
buffer and if it is a load or store instruction and its memory request is finished. If the
affected instruction is a branch instruction and the execution revealed the branch was
incorrectly taken then the processor is flushed, that means all parts of the processor
except the PC are reset to their initial state. The PC is set to the corrected branch

target and the processor starts fetching instructions again.

31

5.3. CYCLE SIMULATION CHAPTER 5. IMPLEMENTATION

32

Chapter 6

User Interaction

6.1 GUI

T menubar > simulation

control

process
_ data

Figure 6.1: Graphical user interface overview

As shown in figure 6.1 and figure 6.2 the GUI! is seperated into a titlebar, a menubar,

the simulation control, processor selection, processor data and memory data. To main-

tain some degree of clarity only one processor (of a multiprocessor simulation) is dis-

played at the same time. All elements of the GUI are clearly seperated and easy to

LGUI: Graphical User Interface

33

6.2. HOW TO CHAPTER 6. USER INTERACTION

identify. Graphics and colors are used to offer a more comfortable and easy to under-

standable interface than a text-only approach would offer.

6.2 How To

To use the simulator for the first time a user has to setup a simulation configuration.
To do this he starts the setup via the menu entry “Setup”. In the first step he config-
ures the global properties as the numbers of processors to simulate, the word length of
data values (memory and register width) and the size of the main memory in number
of words. The second step is repeated for each processor to configure. The user has to
configure the number of the processor registers, the sizes of the branch history table,
the reservation station and the reorder buffer. Also he has to configure the execution
units to use by adding as much as he want by selecting the instructions it should process
and the latency it has. Finally the user has to insert the instructions to execute in the
instruction memory. The size of the instruction memory is dynamically calculated by
the number of inserted instructions. To help the user and speed up the configuration
process each field is preset with a common default value, a two-cycle omnipotent exe-
cution unit is preconfigured and to avoid unintended never-ending programs a ‘TERM’
instruction is autoappended. After the user has setup all processors he finishs the setup
and initializes the simulator. Figure 6.2 shows the initiated simulator with an example

setup.

To reuse a just setup simulator configuration at a later date the user can save the

configuration as a file and reload it when needed.

After initialization the simualator control, the processor selection, processor data and
memory data are displayed. The processor selection switches between the different
simulated processor and updates the displayed data. The processor data shows the
different parts of the simulated processor and important status flags. To maintain a
small interface most of the identifiers are abbreviated but reveal their full name when

the mouse hovers over them.

The simulation is controlled via three controls which offer the possibilities to reset the
simulation to the initial state, to simulate one cylce and to fast-forward by simulating

10 cycles

34

CHAPTER 6. USER INTERACTION 6.3. RESTRICTIONS

E - Yet Another Processor Simulator
Setup Load Save

Q00

[Status] [Instruction Memory] [Reg] [FwdRef] [Reservation Station| Sla:;;' ot ody

Term: - State: ready CO T) i |roblope riljvliri2{v|ct]disp Address: 0

Cycles: 10 | | Address: 4 o o]l [0 fo 13 [SUBRGRIRZ[0 3 [0 |6 PBlme] [
Data MULR4R2EI | [T 3| 1 [0 37 [SWRSARD [0 |5 |3 [0 |3 Jise i [Memli]

[Taterupt] 1|6 2 10 010

wpr: false addr|data 3 |0 3 |3 e

wprpc0 | [0 |ADDIRIRO3] (i Tol i To 210

jfwd: false 1 _|ADDRIRLRI|| [e o [5 |0 [ReOrder Buffer] 30

fwdpe0 | 2 |SUBRIRLRZ| [s Tol l6 To i |stjope bpt |dst|v|rdy [mem 410

bfwd: false 3 [SWR3IERD) 7 [0l |[7 [o 1|3 [SUB R3 R1R2|false|0 |Offalee|- | 310

bfwd pe:0 | | I IMUL R4R2RS| | [Lofo || |[Lofo 2% [SW RS 3(R1) [falee|0 |Offaise 510

- 5 |LWRS2RI) HI|o| [HI|o 710

PC: 4 6 _ITERM

IRbsy: false

ICspoilt false

[ID] [ExUnits [BHT]

[Rreq true tgt|ope |step|rdy [bsy i |li]

IR - 3 [SUB[12 [fatse]true]

Figure 6.2: Graphical user interface with inititated example setup

6.3 Restrictions

As described in chapter 4 the simulator has some restrictions. During the setup incor-
rect or unsupported values are noticed and the user is prompted to change them. For

example the data word length (in bytes) only allows values between 1 and 8.

35

6.3. RESTRICTIONS CHAPTER 6. USER INTERACTION

36

Chapter 7

Result

7.1 Validation

To validate the resulting simulator an empirical approach using a reference simulator is
used to prove that the simulator produces the same results as a linear simulator. The
reference simulator is a one-cylce simulator, executing one instruction every simulation
step. Its implementation is as simple as possible to offer the required reliability to serve
as a reference simulator. To validate the simulator randomly generated sequences of
instructions and operands are passed to both simulators. Their register and memory
values are compared for each instruction after it left both simulators. To avoid infinite
test runtime each random program was tested for a maximum runtime of 1000 passed
instructions. During validation some errors have been discovered and elminated. In the
end the test program discovered no more differences after the execution of around one
million random programs with each between 1 and 100 instructions. The simulators
generated the same results in a significant number of test cases, hence we can consider

the resulting simulator as reliable too.

On the other hand the implementation of the instructions themselves is verified by
testing with relevant test cases. Test cases for signed operations cover tests with all
combinations of positive and negative operands. All test cases produced the expected

result and therefore the implementation is considered reliable.

37

7.2. IMPLEMENTATION COMMENT CHAPTER 7. RESULT

7.2 Implementation comment

The implementation of the simulator draft revealed some difficulties which were not
obvious to me from the basics I have learned in class before. For example results which
are already in the reorder buffer must be forwarded to the reservation station as long as
they are in the reorder buffer and the load/store instructions required more attention

because their reorder behaviour differs from other instructions.

Some details initially planned could not be implemented due to their unexpected com-
plexity or limited available time. It was planned that the resulting simulator should
support a cached memory architecture and no seperate memories for per-processor

instruction memories and a main memory.

The implementation supports many customizable usage scenarios and due to a object
orientated design can be modified or extended without much additional effort. The
interface is easy to understand and only shows the essential data, but further work in

the interface would be recommended aided by user feedback.

7.3 Suggestions for further work

As mentioned before a cached memory architecture could be developed for the usage
with the simulator. This would offer the possibility to demonstrate the effects of mul-

tiple processors writing to one memory with and without a cache coherence protocol.

Another optional extension could be the support of exceptions as for example raised

by MIPS32 instruction ADD because of an integer overflow.

The support of other processor types, such as a pipelined or a one-cycle implementation,
to offer a direct comparison between these processor types, would be another valuable
addition.

The GUI could be evaluated with groups of interested students and improved according
to the results. Possible improvements may cover i.e. the addition of a tutorial or

different detail/context views for different exercises.

38

CHAPTER 7. RESULT 7.4. CONCLUSION

7.4 Conclusion

The resulting simulator fits most of the aims specified at the beginning of this docu-
ment. It shows the working principles of a dynamic superscalar processor and is very
customizable. The interface is very simple and easy to understand. The simulator itself
requires an ASP.Net Server to be started, but actual users only require a modern web-
browser with enabled JavaScript. According to my opinion the simulator could help
to improve the understanding of the operating principles of dynamic scheduling and

speculative execution for interested students and therefore should be used in education.

39

7.4. CONCLUSION CHAPTER 7. RESULT

40

Bibliography

1]

2]

3]
[4]

[5]

John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative
Approach, 4th Edition. Morgan Kaufmann, 2006.

Donald E. Knuth. The art of computer programming, volume 1. Addison Wesley
Longman Publishing Co., Inc., Redwood City, CA, USA, 3 edition, 1997. funda-
mental algorithms.

Tilo Gockel. Form der wissenschaftlichen Ausarbeitung. Springer-Verlag, 2008.

Todd Austin, Eric Larson, and Dan Ernst. Simplescalar: An infrastructure for
computer system modeling. Computer, 35:59-67, 2002.

SimpleScalar LLC. Simplescalar overview. http://www.simplescalar.com/
overview.html. (2011.02.10, http://www.webcitation.org/5wOSsM9im).

Jose Renau, Basilio Fraguela, James Tuck, Wei Liu, Milos Prvulovic,
Luis Ceze, Smruti Sarangi, Paul Sack, Karin Strauss, and Pablo Mon-
tesinos. SESC simulator. http://sesc.sourceforge.net. (2011.02.10,
http://www.webcitation.org/5wOTIXvCS).

Milo M. K. Martin, Daniel J. Sorin, Bradford M. Beckmann, Michael R. Marty,
Min Xu, Alaa R. Alameldeen, Kevin E. Moore, Mark D. Hill, and David A.
Wood. Multifacet’s general execution-driven multiprocessor simulator (gems)
toolset. SIGARCH Comput. Archit. News, 33:92-99, November 2005.

Multifacet GEMS Development Team. Multifacet gems. http://www.cs.wisc.
edu/gems/. (2011.02.10, http://www.webcitation.org/5wOUSPhDQ).

The mb simulator system. http://www.mbsim.org. (2011.02.10,
http://www.webcitation.org/5wOTbIv6S).

Nathan L. Binkert, Ronald G. Dreslinski, Lisa R. Hsu, Kevin T. Lim, Ali G. Saidi,
and Steven K. Reinhardt. The m) simulator: Modeling networked systems. [FEE
Micro, 26:52-60, 2006.

Matt T. Yourst. Ptlsim: A cycle accurate full system x86-64 microarchitectural
simulator. In ISPASS 2007, 2007.

41

http://www.simplescalar.com/overview.html
http://www.simplescalar.com/overview.html
http://sesc.sourceforge.net
http://www.cs.wisc.edu/gems/
http://www.cs.wisc.edu/gems/
http://www.m5sim.org

BIBLIOGRAPHY BIBLIOGRAPHY

[12] Matt T. Yourst. Ptlsim x86-64 cycle accurate processor simula-
tion design infrastructure. http://www.ptlsim.org. (2011.02.10,
http://www.webcitation.org/5wOi5Nlue).

[13] Hui Zeng, Matt Yourst, Kanad Ghose, and Dmitry Ponomarev. Mptlsim: a cycle-
accurate, full-system simulator for x86-64 multicore architectures with coherent
caches. SIGARCH Comput. Archit. News, 37:2-9, July 2009.

[14] Kenneth Vollmar and Pete Sanderson. Mars: an education-oriented mips assembly
language simulator. In Proceedings of the 37th SIGCSE technical symposium on
Computer science education, volume 38 of SIGCSFE 06, pages 239-243, New York,
NY, USA, 2006. ACM.

[15] R. N. Ibbett, P. E. Heywood, and F. W. Howell. HASE: A Flexible Toolset for
Computer Architects. The Computer Journal, 38(10):755-764, 1995.

[16] R. Mcnab and F. W. Howell. Using java for discrete event simulation. In in

Proc. Twelfth UK Computer and Telecommunications Performance Engineering
Workshop (UKPEW), Univ. of Edinburgh, pages 219-228, 1996.

[17] University of Edinburgh Institute for Computing Systems Architecture, School
of Informatics. Javahase. http://www.icsa.inf.ed.ac.uk/research/groups/
hase/javahase/. (2011.02.13, http://www.webcitation.org/5wSzSXSmd).

[18] University of Edinburgh Institute for Computing Systems Architecture, School
of Informatics. simjava. http://www.icsa.inf.ed.ac.uk/research/groups/
hase/simjava/. (2011.02.13, http://www.webcitation.org/5wSyjk61H).

[19] D.A. Patterson and J.L. Hennessy. Computer Organization and Design: The
Hardware/software Interface. Morgan Kaufmann, 3rd edition, 2005.

[20] TOP500.0rg. The sicortex sc series. http://wuw.top500.0rg/2007_
overview_recent_supercomputers/sicortex_sc_series. (2011.02.15,
http://www.webcitation.org/5wWkGALIu).

[21] MIPS Technologies. MIPS32 Architecture for Programmers Volume I: Introduc-
tion to the MIPS32 Architecture, 2.60 edition. http://www.mips.com/products/
product-materials/processor/mips-architecture/.

[22] MIPS Technologies. MIPS32 Architecture for Programmers Volume II: The
MIPS32 Instruction Set, 2.62 edition. http://www.mips.com/products/
product-materials/processor/mips-architecture/.

42

http://www.ptlsim.org
http://www.icsa.inf.ed.ac.uk/research/groups/hase/javahase/
http://www.icsa.inf.ed.ac.uk/research/groups/hase/javahase/
http://www.icsa.inf.ed.ac.uk/research/groups/hase/simjava/
http://www.icsa.inf.ed.ac.uk/research/groups/hase/simjava/
http://www.top500.org/2007_overview_recent_supercomputers/sicortex_sc_series
http://www.top500.org/2007_overview_recent_supercomputers/sicortex_sc_series
http://www.mips.com/products/product-materials/processor/mips-architecture/
http://www.mips.com/products/product-materials/processor/mips-architecture/
http://www.mips.com/products/product-materials/processor/mips-architecture/
http://www.mips.com/products/product-materials/processor/mips-architecture/

	1 Introduction
	1.1 Subject
	1.2 Motivation
	1.3 Structure and outline

	2 Related Work
	2.1 Review of common simulators
	2.2 Distinction and benefits

	3 Fundamentals
	3.1 MIPS
	3.2 Tomasulo Algorithm
	3.3 Hardware-Based Speculation

	4 Design Decisions
	4.1 Assumptions
	4.2 Restrictions
	4.2.1 Instruction Set
	4.2.2 Memory

	4.3 Other
	4.4 Hazards

	5 Implementation
	5.1 Programming language
	5.2 Objects
	5.2.1 Processor
	5.2.2 Reservation Station
	5.2.3 ROB
	5.2.4 Memory

	5.3 Cycle Simulation
	5.3.1 IF
	5.3.2 ID
	5.3.3 EX
	5.3.4 WB

	6 User Interaction
	6.1 GUI
	6.2 How To
	6.3 Restrictions

	7 Result
	7.1 Validation
	7.2 Implementation comment
	7.3 Suggestions for further work
	7.4 Conclusion

